Ni-catalyzed enantioselective [2 + 2 + 2] cycloaddition of malononitriles with alkynes
نویسندگان
چکیده
•Enantiotopic differentiation of dinitrile to all-carbon quaternary centers•Atom economic synthesis enantioenriched densely substituted pyridines•Zinc-promoted hetero-cyclometallation nickel with alkyne and nitrile•Broad scope, good enantioselectivity, excellent regioselectivity Pyridines are among the most significant heterocycles not only prevalently found in pharmaceuticals, natural products, materials, but also widely applied as ligands or catalysts organic synthesis. State-of-the-art methods access functionalized pyridines rather limited due great challenges selectively install devise substitution patterns. In this article, we report a zinc-promoted nickel-catalyzed enantioselective [2 + 2 2] cycloaddition alkynes alkyne-tethered malononitriles for construction from chemical feedstocks. The nitrile-containing stereocenter is efficiently introduced by desymmetrization yield, regioselectivity, enantioselectivity. We believe that established strategy its underlying mechanism will provide new opportunities asymmetric catalysis find applications broad research fields. Efficient strategies assemble pyridine derivatives highly important, given their significance both synthetic medicinal chemistry. Here, an intermolecular pyridines. ?-all-carbon center adjacent desymmetrizing two cyano groups disubstituted malononitriles. Notably, terminal tolerated afford tetrasubstituted Zinc halide essential enable occurrence transformation promoting step. reaction uses bio-renewable 2-MeTHF solvent features mild conditions, functional group compatibilities, enantioselectivities. This study offers straightforward approach valuable heteroarenes feedstock chemicals forming three bonds one simultaneously single incorporation stereogenic centers enhance three-dimensional complexity privileged molecules importance drug discovery.1Lovering F. Bikker J. Humblet C. Escape flatland: increasing saturation improving clinical success.J. Med. Chem. 2009; 52: 6752-6756Crossref PubMed Scopus (1807) Google Scholar,2Liu Y. Han S.J. Liu W.B. Stoltz B.M. Catalytic stereocenters: assembly key building blocks biologically active molecules.Acc. Res. 2015; 48: 740-751Crossref (431) Scholar As common heterocycles, varying substituents on nucleus feature prominently bioactive small (Scheme 1A).3Pozharskii A.F. Soldatenkov A.T. Katritzky A.R. Heterocycles Life Society: An Introduction Heterocyclic Chemistry, Biochemistry Applications.2nd Edition. Wiley, 2011Crossref (267) Scholar,4Altaf A.A. Shahzad A. Gul Z. Rasool N. Badshah Lal B. Khan E. A review derivatives.J. Drug. Des. 1: 1-11Google Moreover, optically pure have been ubiquitously employed synthesis.5Kwong H.-L. Yeung C.-T. Lee W.-S. C.-S. Wong W.-L. Chiral pyridine-containing catalysis.Coord. Rev. 2007; 251: 2188-2222Crossref (177) Scholar, 6Yang G. Zhang W. Renaissance pyridine-oxazolines chiral catalysis.Chem. Soc. 2018; 47: 1783-1810Crossref 7Wurz R.P. Dialkylaminopyridine synthesis.Chem. 107: 5570-5595Crossref (248) Thus, enantioselectively synthesize novel containing can potentially expand accessible biological space motif, well offer catalysis.8Allais Grassot J.M. Rodriguez Constantieux T. Metal-free multicomponent syntheses pyridines.Chem. 2014; 114: 10829-10868Crossref (325) 9Hill M.D. Recent derivatives.Chem. Eur. 2011; 16: 12052-12062Crossref (363) 10Gulevich A.V. Dudnik A.S. Chernyak Gevorgyan V. Transition metal-mediated monocyclic aromatic heterocycles.Chem. 2013; 113: 3084-3213Crossref (790) Conventional such structures include 1,2-addition/reduction pyridyl ketones, imines, alkenes,11Liu Chen He Y.M. Li Fan Q.H. Enantioselective tunable pyridine–aminophosphine hydrogenation.Org. Biomol. 2019; 17: 5099-5105Crossref 12Komanduri Krische M.J. reductive coupling 1,3-enynes heterocyclic aldehydes ketones via rhodium-catalyzed hydrogenation: mechanistic insight into role Brønsted acid additives.J. Am. 2006; 128: 16448-16449Crossref (211) 13Friel D.K. Snapper M.L. Hoveyda A.H. Aluminum-catalyzed alkylations pyridyl-substituted alkynyl dialkylzinc reagents.J. 2008; 130: 9942-9951Crossref (64) 14Yin Dai Jia H. Bu L. Qiao Zhao X. Jiang Conjugate addition?enantioselective protonation N-aryl glycines ?-branched 2-vinylazaarenes cooperative photoredox catalysis.J. 140: 6083-6087Crossref (133) 15Qiao Yin reduction azaarene-based visible light-driven Commun. 55: 7534-7537Crossref 16Yin Gonçalves T.P. Zhan Q. Wang Huang K.W. All-carbon stereocenters ? azaarenes radical-based olefin difunctionalization.J. 2020; 142: 19451-19456Crossref (30) transition-metal-catalyzed arylation using 2-pyridyl halides17Ge S. Hartwig J.F. Nickel-catalyzed ?-arylation heteroarylation chloroarenes: effect selectivity, oxidation state, room-temperature reactions.J. 133: 16330-16333Crossref (130) 18Ghosh Walker J.A. Ellern Stanley L.M. Coupling catalytic alkene hydroacylation ?-arylation: ?-chiral stereocenters.ACS Catal. 2016; 6: 2673-2680Crossref (23) 19Friis S.D. Pirnot M.T. Buchwald S.L. Asymmetric hydroarylation vinylarenes synergistic combination CuH Pd 138: 8372-8375Crossref (144) boronic acids,20Schäfer P. Palacin Sidera M. Fletcher S.P. Suzuki-Miyaura Rhodium-catalysed allylic racemates.Nat. 2017; 8: 15762Crossref (65) allylation 2-substituted pyridines21Trost Thaisrivongs D.A. Palladium-catalyzed Regio-, Diastereo-, benzylic pyridines.J. 131: 12056-12057Crossref (98) 22Liu X.J. Jin W.Y. Q.Q. Zheng You Sequence-dependent Stereodivergent alkylation/fluorination acyclic ketones.Angew. Int. Ed. Engl. 59: 2039-2043Crossref (36) 23Motaleb Rani Das Gonnade R.G. Maity Phosphite catalyzed C–H [2,3]-Aza-Wittig rearrangement.Angew. 58: 14104-14109Crossref (6) 1B). However, these require use prefunctionalized Recently, remarkable advances direct functionalization achieved utilizing dual photoredox/Brønsted catalysis24Proctor R.S.J. Davis H.J. Phipps R.J. Minisci-type addition heteroarenes.Science. 360: 419-422Crossref (234) Scholar,25Zheng D. Studer ?-amino-acid diamine three-component radical cascade reactions.Angew. 15803-15807Crossref (56) scandium catalysis26Song O W.W. Hou bond alkenes half-sandwich rare-earth complexes.J. 136: 12209-12212Crossref (161) 1C). Although efficient methods, dense core substitutions still limited. By contrast, [2+ 2+ nitriles represents fascinating atom-economical tool pyridines, starting materials build diverse patterns step.27Heller Hapke ring systems transition metal-catalysed [2+2+2] reactions.Chem. 36: 1085-1094Crossref (427) 28Shaaban M.R. El-Sayed R. Elwahy A.H.M. Construction fused cyclotrimerization and/or nitriles.Tetrahedron. 67: 6095-6130Crossref (118) 29Tanaka K. Hara Nishida Hirano Synthesis perfluoroalkylated benzenes through cationic Rh(I)/modified BINAP-catalyzed chemo- regioselective cycloaddition.Org. Lett. 9: 1907-1910Crossref (66) 30Kashima Ishii Tanaka pyridylphosphonates 1,6- 1,7-diynes diethyl phosphorocyanidate.Eur. Org. 2015: 1092-1099Crossref (18) 31Wada Noguchi C2-symmetric spirobipyridine Rh(I)/modified-BINAP double 1295-1298Crossref (86) 32Wang Wu Wan simple iron catalyst form pyridines.Angew. 50: 7162-7166Crossref (151) 33Tan Bormann C.T. Perrin F.G. Chadwick F.M. Severin Cramer Divergent arenes reactions triazenes.J. 141: 10372-10383Crossref (32) 34Onodera Shimizu Kimura J.N. Kobayashi Ebihara Kondo Sakata Takeuchi Iridium-catalyzed ?,?-diynes nitriles.J. 2012; 134: 10515-10531Crossref (92) Correspondingly, version conceptually yet largely unsolved route.35Link Sparr Stereoselective arene formation.Chem. 3804-3815Crossref There handful examples reported primarily atropisomers arylpyridines 1D).36Gutnov Heller Fischer Drexler Spannenberg Sundermann Cobalt(I) nitriles: enantiomerically enriched atropoisomers 2-arylpyridines.Angew. 2004; 43: 3795-3797Crossref (220) 37Hapke Kral Gutnov Redkin axially 1-aryl-5,6,7,8-tetrahydroquinolines cobalt-catalyzed 1-aryl-1,7-octadiynes 2010; 75: 3993-4003Crossref (111) 38Kashima Teraoka Uekusa Shibata Rhodium-catalyzed atroposelective ortho-substituted phenyl diynes ortho regio- enantioselectivity.Org. 18: 2170-2173Crossref (24) Seminal contributions create central chirality were elegantly conducted employing rhodium 67:33–82:18 er achieved, albeit substrates included 1E).39Tanaka Suzuki Cationic rhodium(I)/modified-BINAP nitriles.Eur. 2006: 3917-3922Crossref (125) was proposed involving oxidative complex metallacyclopentadiene species (int I) subsequent nitrile insertion. induction enantioselectivity likely insertion Pioneering studies Louie demonstrated capability construct pyridines.40McCormick M.M. Duong H.A. Zuo route 2005; 127: 5030-5031Crossref (202) 41Kumar Prescher serendipitous discovery: unactivated nitriles.Angew. 10694-10698Crossref 42Stolley R.M. Thomas D.R. discovery [Ni(NHC)RCN]2 formation 15154-15162Crossref (60) 43Stolley Mechanistic evaluation Ni(IPr)2-catalyzed pyridines: evidence ?1-Ni(IPr)2(RCN) intermediate.Organometallics. 32: 4952-4960Crossref (37) 44Thakur Advances carbocycles heterocycles.Acc. 2354-2365Crossref (76) 45Clevenger A.L. Stolley Staudaher N.D. Al Rheingold Vanderlinden R.T. et al.Comprehensive between chelating phosphines Ni(cod)2.Organometallics. 37: 3259-3268Crossref (19) 46Takahashi Tsai F.Y. Yamanaka Nakajima Kotora Selective preparation pyridones, iminopyridines different azazirconacycles.J. 2002; 124: 5059-5067Crossref (192) Inspired studies44Thakur line our interest desymmetrization,47Lu Hu X.D. X.W. Cai Usman Cong cycloenones enabled Ni 7328-7333Crossref (20) Scholar,48Zeng X.P. Cao Z.Y. Y.H. Zhou stereocenters.Chem. 116: 7330-7396Crossref (379) envisaged intramolecular malononitrile 1 could aza-nickelacyclopentadiene II), followed III) elimination deliver fully 1F). anticipated rigid five-membered ring-fused int II facilitate discrimination CN efficiently. realize hypothesis, there several potential address. First, hetero-coupling sterically bulky alkyl generally sluggish.41Kumar Second, undesired competition alkynes49Bhatarah Smith E.H. Nickel(0)-promoted tetralin lactones co-cyclisation monoynes octa-1,7-diynes terminally ester amide groups.J. Perkin Trans. 1. 1992; 1992: 2163-2168Crossref Scholar,50Sato Nishimata Mori isoindoline isoquinoline nickel(0) cocyclization.J. 1994; 6133-6135Crossref (163) cleavage C–CN under catalysis51Mills L.R. Graham Patel Rousseaux S.A.L. Ni-catalyzed cyanation aryl halides phenol transnitrilation.J. 19257-19262Crossref (34) 52Nakao Yada Ebata Hiyama dramatic Lewis-acid carbocyanation alkynes.J. 129: 2428-2429Crossref (241) 53Zhang Luan Y.X. Peng Ye aluminum controls indenes: C-CN activation.Angew. 7439-7443Crossref (16) would be problematic. Third, enantiotopic extremely challenging rarely explored minuscule steric size54Eliel E.L. Wilen S.H. Mander L.N. Stereochemistry Organic Compounds. 1994Google binding affinity, which might poison catalyst.55Rach S.F. Kühn F.E. Nitrile ligated metal complexes weakly coordinating counteranions applications.Chem. 109: 2061-2080Crossref Therefore, identification system accelerate aza-metallacycle process while creating environment control achieving transformation. products provided itself because pharmacophore discovery.56Wang Du survey protein–ligand interactions.Future 10: 2713-2728Crossref (27) 57Fleming F.F. Yao Ravikumar P.C. Funk Shook B.C. Nitrile-containing pharmaceuticals: efficacious roles pharmacophore.J. 53: 7902-7917Crossref (955) 58Fleming products.Nat. Prod. Rep. 1999; 597-606Crossref (394) carbon moiety plays important preventing toxic cyanide liberation.56Wang disclose desymmetric readily available generate bearing ?-nitrile-containing center. operates conditions eco-friendly solvent, 2-MeTHF.59Pace Hoyos Castoldi Domínguez de María Alcántara 2-methyltetrahydrofuran (2-MeTHF): biomass-derived application chemistry.ChemSusChem. 5: 1369-1379Crossref (388) Lewis crucial reactivity. Investigations carried out 2-benzyl-2-phenylbutynyl-malononitrile 1a 6-dodecyne model substrates, highlighted Figure (see Tables S1–S5 details). Previous observations al. revealed acids promote alkynes.60You Xie Xiong Sun al.Nickel-catalyzed alkyne-nitriles assisted acids: 22: 16765-16769Crossref Scholar,61Wang Gan ?- ?-carbolines alkynes.Org. 19: 110-113Crossref (50) this, first examined ZnCl2 additive. Bisphosphine biaryl backbone showed moderate reactivity selectivity general (Table S1). For instance, BINAP (L1) TolBINAP (L2) delivered desired product 2a (75:25 er, entries 2), XylBINAP (L3) resulted increased (83:17, entry 3). screening solvents, delighted better yield (entries 3–5 Table S2), probably weak coordination ability metals high solubility zinc halides.62Aycock D.F. Solvent organometallic biphasic reactions.Org. Process Dev. 11: 156-159Crossref 4 Å molecular sieves (MS) slightly improved (entry 6 S3). Lowering temperature diminished enhanced obtained at higher concentration 3 equivalents 7 S4). Our further additives led balance (97:3 er) equivalent ZnBr2 8 S5). substantial (vide infra) virtually no observed experiment without presence 9). rhodium/BINAP catalyst,39Tanaka With optimal established, turned attention elucidate scope 2). Substituents tethered 2A). Substrates electron-donating substituents, including 4-methyl (2b), 4-methoxy (2c), 3-methoxy (2j), corresponding 53%–79% yields 95:5–97:3 er. electron-withdrawing (2d–2h, 2k–2m) (67%–90%) lower (92:8–95:5). It notable groups, aldehyde, ketone, ester, compatible reaction. Importantly, 2-thienyl afforded (2i) er), yield. 2-naphthyl-substituted substrate tested, resulting 75% 95:5 (2n). Next, range (R2) attached ?-prochiral 2B). electronic nature moiety, methyl (2o, 2p), methoxy (2q), trifluoromethyl (2r), acceptable (70%–75%) 1-naphthyl 2s 69% Remarkably, heterocycle-containing malononitriles, 2-furyl (2t), (2u), 3-indolyl (2v), all tolerated, giving 61%–76% 93.5:6.5–94:6 noted decreases smaller size R2 substituents. cyclohexylmethyl (2w) 97:3 methyl-substituted (2x) 86:14 allyl out, leading 76% decreased (2y). array alkynes, internal terminal, partner investigated 2C). Besides 2-butyne Scheme 2A, other aliphatic 3-hexyne, 4-octyne, 5-decyne, 2z–2ab (54%–57%) enantioselectivities (95:5 er). When diaryl acetylenes employed, (63%–73%) (92:8–94:6 (2ac–2ae). absolute configuration enantiopure 2ac (>99.5:0.5 determined X-ray analysis. unsymmetrical 1-phenyl-1-propyne, 3.4:1 91:9 major isomer 2af. accessed substrates. Alkyl aryl-substituted converted 2,3,4,5-tetrasubstituted (2ag–2aj) (95:5–96:4) perfect regioselectivities (>20:1 except 2aj). ethynylcyclopropane, enyne, trimethylsilylacetylene, nitrile- benzyloxy-containing subjected 2ak–2ap yields, enantioselectivities, regioselectivities. consistent previous non-enantioselective cycloadditions.61Wang Additional compatibility chloro- bromo-substituted (2aq 2ar), heteroaryl (2as 2at) pendent preliminary bioactivity assay 2d 2ap able inhibit glucagon activity cultured primary hepatocytes.63For example inhibition receptor, see: Schmidt, G., Angerbauer, R., Brandes, A., Muller-Gliemann, M., Bischoff, H., D., Wohfeil, S., Schoen, W.R., Ladouceur, G.H., Cook, J.H.II, (1996). Substituted biphenyls anti-hypercholesterinemic, anti-hyperlipoproteinemic anti-hyperglycemic agents. WO9804528, filed, 29 July 1997, published, 5 February 1998.Google expanded R1 substituent beyond aromatics. enyne-tethered (2au 2av). (e.g., cyclopropyl, 2aw; methyl, 2ax) compatible, providing Specific limitations chemistry terms unsuccessful tried S2. No occurred propynyl chloride, amine, benzoate. Ethynyl borate proven unreactive. tether has profound influence reactivity, either lo
منابع مشابه
NbCl(3)-catalyzed [2+2+2] intermolecular cycloaddition of alkynes and alkenes to 1,3-cyclohexadiene derivatives.
NbCl(3)(DME)-catalyzed [2+2+2] intermolecular cycloaddition of alkynes and alkenes was successfully achieved to give 1,4,5-trisubstituted-1,3-cyclohexadiene derivatives in good yields.
متن کاملEnantioselective [2+2+2] cycloaddition of ketenes and carbon disulfide catalyzed by N-heterocyclic carbenes.
The chiral N-heterocyclic carbene-catalyzed [2+2+2] cycloaddition of ketenes and carbon disulfide was realized to give the cycloadduct of 1,3-oxathian-6-ones in good yields with excellent enantioselectivities.
متن کاملHighly enantioselective synthesis of silahelicenes using Ir-catalyzed [2+2+2] cycloaddition.
Silahelicenes, which contain two silole moieties in a helically chiral structure, were synthesized by a chiral Ir-catalyzed intermolecular [2+2+2] cycloaddition of tetraynes with diynes along with a Ni-mediated intramolecular [2+2+2] cycloaddition. The photophysical properties of the obtained highly enantiomerically enriched silahelicenes (up to 93% ee) were also measured.
متن کاملGold(I)-catalyzed enantioselective [4 + 2]-cycloaddition of allene-dienes.
An enantioselective gold(I)-catalyzed intramolecular [4 + 2]-cycloaddition of allenes and dienes is reported. The reactions allow for the asymmetric synthesis of trans-hexahydroindenes and pyrrolidine products using C(3)-symmetric phosphitegold(I) and ortho-arylphosphoramiditegold(I) complexes as catalysts, respectively.
متن کاملEnantioselective formal [2+2] cycloaddition of ketenes with nitroso compounds catalyzed by N-heterocyclic carbenes.
Chiral N-heterocyclic carbenes were found to be efficient catalysts for the formal [2+2] cycloaddition reaction of alkyl(aryl)ketenes and nitroso compounds to give the corresponding 1,2-oxazetidin-3-ones in moderate to good yields with high enantioselectivities. Reductive ring-opening of the oxazetidinones give the corresponding α-hydroxy acid derivatives in good yields.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chem
سال: 2021
ISSN: ['2451-9308', '2451-9294']
DOI: https://doi.org/10.1016/j.chempr.2021.02.013